
1

IoTtalk User Manual

Yi-Bing Lin and Yun-Wei Lin

College of Computer Science

National Chiao Tung University

liny@csie.nctu.edu.tw

Section 1. Introduction

An IoT device can be characterized by its functionalities or “device features”. For the

purpose of description, we define a device feature (DF) as a specific input or output

“capability” of the IoT device. For example, a wearable ring with the temperature sensor

has the input device feature (IDF) called “Temperature”. A pair of wearable glasses with the

optical head-mounted display has the output device feature (ODF) called “Display”. An IoT

device may be connected to the network (i.e., Internet) using wireless communications

directly or indirectly through a smartphone. If so, the corresponding software called

network application is developed and executed by a server in the network side, which

receives or sends the messages from/to the IoT device. When the IDFs produce new values,

the IoT device will inform the network application to take some actions, and the network

application may send the result to the ODF of an IoT device. With this view, the IoT devices

interact with each other through their features, and we say that the network application

“maps” the IDFs to the ODFs.

IoTtalk is a platform for IOT device interaction based on the concept of device feature.

When the IoT devices are connected, IoTtalk automatically generates/reuses the application

2

software for these sensors so that every input IoT device can be conveniently connected to

an output IoT device.

Figure 1.1 illustrates 4 IoT devices D1, D2, D3 and D4, where the left-hand side of the

figure illustrates the IDFs of the devices and the right-hand side of the figure illustrates the

ODFs of the devices. In our example, D1 is a multi-sensor device called MorSensor. The

sensors on a MorSensor device can be replaced easily by plugging/unplugging the slices of

the sensor. In Figure 1.1, D1 has two IDFs Acceleration and Temperature. As illustrated in

the left-hand side of Figure 1.1, the smartphone D2 has two IDFs, Acceleration and

Microphone. D2 also has an ODF Display illustrated in the right-hand side of Figure 1.1.

The bulb D3 has an ODF called Luminance. The Tail D4 has one ODF called Vibration.

This special device is the Silver Medal Award artwork “Transparent Organ” in Salon

International Des Invention [Huang2014]. The tail of this device wags based on the

vibration strength received from its Vibration.

Figure 1.1. Connections among D1, D2, D3, and D4

Lines (1)-(4) in Figure 1.1 illustrates how these IoT devices interact, where a line

connecting an IDF to an ODF represents interactions between the corresponding device

features in input and output IoT devices. Such interactions are implemented in Python

programs called network applications. In Figure 1.1, the dashed box NA1 represents the

network application NA1 that implements interactions (1) and (3) for D1, D2 and D3.

Acceleration

Temperature

D1

Acceleration

Microphone

D2

Luminance

D3

Vibration

D4

NA1

NA2

NA3

D2

Display

1

2

3

4

3

Similarly, NA2 implements interactions (2) for D1 and D2, and NA3 implements

interactions (4) for D2 and D4. Consider Line (2) as an example. This line links

Temperature IDF (the temperature sensor of D1) to Display ODF (the display of D2), which

means that NA2 processes the temperature values sent from D1, and then displays the

processed results on the smartphone D2. If a network application handles the individual

device features independently, then we can write a software module for each device feature,

and the network application can be simply constructed by including these reusable DF

modules. For example, the building blocks for Line (4) in Figure 1.1 are shown in Figure

1.2, where the network application NA3 handles Microphone of D2 through the

Microphone Module. This IDF module computes, e.g., the volume of Microphone, and

passes the result to the Vibration Module. This ODF module translates the received value to

the vibration intensity. Then NA3 outputs this intensity to the Vibration ODF to drive the

vibration mechanism of D4.

Figure 1.2. Software modules for microphone to vibration mapping NA3

Since the IDF and the ODF modules are independent of each other, these software

modules can be reused to build the network applications, and effectively speed up the

development of the IoT applications. Figure 1.1 shows that different IoT devices may have

the same IDFs/ODFs. For example, D1 and D2 have the same Acceleration IDF. Therefore,

NA1 can reuse same software modules to implement the required tasks (i.e., Lines (1) and

(3)) for these similar DFs.

As we pointed out, the central concept of our approach is the DFs that can be classified

based on traditional and non-traditional human senses:

Microphone

D2

Vibration

D4 Network Application

IDF Module

(Microphone)

ODF Module

(Vibration)

4

 Sight: An IDF can be a camera with one DF-parameter “video format” or a color sensor

with three DF-parameters for red, green, and blue. An ODF can be a display with one

DF-parameter “format” to specify text, graphics, video, and so on. Another example of

sight ODFs is a light bulb with one-parameter DF called “Luminance”.

 Hearing: An IDF can be a microphone with one DF-parameter “sound pressure level”

expressed in μPa or Pa. An ODF can be a speaker with the same DF-parameters as a

microphone, an automatic music playing machine driven by music scores, and so on.

 Taste, smell, and chemoreceptor: The IDFs can be a carbon monoxide detector with one

DF-parameter “CO-level”.

 Touch: The IDFs can be pressure sensors with one DF-parameter “pound per square inch”

(PSI), barometers with one DF-parameter “atmosphere” (ATM), and so on. Another

example of touch IDF is a button with one Boolean DF-parameter that takes values “on”

and “off”. The touch ODFs can be multi-stage switches with one integer DF-parameter.

 Temperature: A temperature sensor has a DF-parameter for temperature degree Celsius or

Fahrenheit. Special thermometers that operate in very high or very low temperatures are

specified by their operation ranges [a, b].

 Motion (including kinesthetic sense and acceleration): A location sensor can be an

outdoor GPS receiver or an indoor iBeacon receiver with three DF-parameters for

longitude, latitude and time. A motion sensor has three DF-parameters for three

dimensions. Examples of motion sensors are accelerometers, gyroscopes, and so on.

The input/output DFs can be vibration, speed, flow, etc.

 Echolocation, electroreception and magnetoception: The IDFs can be an ultrasound

sensor with one DF-parameter “frequency” of the sound, a voltage sensor with one

5

DF-parameter “voltage” or a magnetometer with two DF-parameters for the strength and

direction of the magnetic field.

Based on the concept of device feature, we developed the IoT device feature

management system called IoTtalk. The IoTtalk architecture (Figure 1.3) includes two

domains: the network domain (Figure 1.3 (a)) and the device domain (Figure 1.3 (b)). The

network domain consists of four systems. The Creation, Configuration and Management

system (abbreviated as the IoTtalk; Figure 1.3 (c)) systematically categorizes the features of

the IoT devices, manages the functions to automatically configure connectivity of IDFs and

ODFs, and stores all related information in the Database system (DB; Figure 1.3 (d)). The

Execution and Communication system (EC; Figure 1.3 (e)) consists of two subsystems. The

Communication SubModule system (CSM; Figure 1.3 (f)) defines HTTP based RESTful

API (Application Programming Interface) for the Device Application (DA; Figure 1.3 (g))

to deliver/retrieve the IDF/ODF information. When an IoT device registers/deregisters with

the EC, the DA instructs the CSM through the HTTP API to change the device status in the

DB. After the IoT devices have registered to the DA, they can transparently communicate

with each other through the EC. The Execution SubModule system (ESM; Figure 1.3 (h)) is

responsible for execution of network applications for the connected IDFs and ODFs. The

GUI (Figure 1.3 (i)) provides a friendly web-based user interface to quickly establish the

connections and meaningful interactions among the IoT devices. Through this GUI, a user

instructs the IoTtalk to execute desired tasks to create or set up device features, DF

functions, and connection configurations.

6

Figure 1.3. The IoTtalk architecture

In the device domain, the DA (Figure 1.3 (g)) is installed in a mobile device (e.g., a

smartphone). The IoT Device Application (IDA; Figure 1.3 (j)) connects to IoTtalk

indirectly through the DA. In the mobile device, the DA consists of two software

components. The Device Application to the Network (DAN; Figure 1.3 (k)) communicates

with IoTtalk for IDA registration and data exchange via Wi-Fi, 3G, or LTE. The Device

Application to IoT Device (DAI; Figure 1.3 (l)) communicates with the IoT device

following the message format specified by the IDA (typically a string delivered through

Bluetooth, Wi-Fi, ZigBee, etc.). Before an IoT device can be manipulated by IoTtalk, it

must register to the CSM. The concept of IoTtalk’s registration follows mobile

telecommunications [Lin2001]. In mobile telecommunications, the registration operation

includes authentication, initialization of encryption, and update of the mobile device

location. Then the mobile device can attach to the network and starts data sessions. In the

current version of IoTtalk, application-level authentication and encryption are not

conducted in the registration operation. Instead, due to the simple nature of IoT device,

IoTtalk’s registration also includes attachment and setup of a data session.

We have developed two versions of IoTtalk. In the network version, IoTtalk is implemented

on a server and is accessed via the Internet. The network version is appropriate for the user

HTTP

(Wi-Fi/3G/

LTE)
DAI DAN

GUIDB

CCM

ESM

HTTP
ORM API

(Bluetooth/

Wi-Fi/ZigBee/…)

IoT Device

IDA

Mobile Device

EC

DA

CSM

ORM API

HTTP

HTTP

ab

c

d

e

f

g h

ij

k

Device Domain Network Domain

l
m

7

to connect various IoT devices distributed in different networks. The network version also

supports multiple users for sharing their devices or functions. In the standalone version,

IoTtalk is implemented on a personal computer (e.g., a laptop or a desktop). In the current

standalone version, all IoT devices are connected to IoTtalk (the laptop) through a

smartphone (mobile device) using the Wi-Fi hotspot service. That is, the user only needs to

turn on the Wi-Fi hotspot service of the smartphone and let the laptop directly connect to it.

In this way, there is no need to use Wi-Fi AP or 3G/LTE base station for the link (k)-(m)-(f)

in Figure 1.3, and the smartphone D2 in Figure 1.1 can serve as the hotspot. Therefore,

besides the role of an IoT device, D2 also serves as the mobile device (Figure 1.3 (g)) and

the wireless network (Figure 1.3 (m)) in the connectively layer, where all IoT devices (D1,

D2, D3, and D4) connect to IoTtalk through D2. In this chapter, we assume that the IoT

devices are connected to IoTtalk through wireless communications. There are other

scenarios that the IoT devices are not wirelessly connected.

Section 2. GUI Operations

Figure 2.1 illustrates the Project Window of IoTtalk, which is divided into three parts:

the menu bar (Figure 2.1 (a)), the Graphical Layout Window (Figure 2.1 (b)), and the

Management Window (Figure 2.1 (c)). The menu bar has seven items. The “Project” item is

a pull-down menu (Figure 2.1 (d)) for the user to select a specific project. The “Model” item

(Figure 2.1 (e)) is another pull-down menu for choosing device models to be manipulated in

the Graphical Layout Window. The “Flush” item (Figure 2.1 (f)) is a button with an

indicator light to flush the states of the project when the project is suspended due to wrong

setting. The indicator light is green when the project is running and is red if the project is

suspended. The “Delete” item (Figure 2.1 (g)) is a button to delete the current project. The

“Simulation ON/OFF” item (Figure 2.1 (h)) is a toggle button to activate (in the “ON” mode)

8

or deactivate (in the “OFF” mode) the simulation function. The “Import” item (Figure 2.1

(i)) is a button to import a project from a file. The “Export” item (Figure 2.1 (j)) is a button

to export a project to a file.

Figure 2.1. Project Window: (a) menu bar; (b) Graphical Layout Window; (c) Management

Window

The Graphical Layout Window graphically shows IoT devices and their connections.

The Management Window allows the user to configure the features, the connections and the

functions corresponding to the IoT devices in the Graphical Layout Window. The graphical

representation of an IoT device is called a (graphical) device object, and a connection is

called a (graphical) connection object. A device object (Figure 2.1 (k)) is the graphical

representation for an instance of the device model, which is created in the GUI, and can be

mapped to a real IoT device. The device object consists of a device setting object (Figure

2.1 (l)), a device model name object (e.g., Ball-throw in Figure 2.1 (m)), and several device

feature (DF) objects (e.g., “Angle” in Figure 2.1 (n)). By clicking the setting object, the user

can set up the parameters, save or delete the device object. By clicking the name object, the

user can bind the device object to a real device connected to IoTtalk. By clicking a DF

object, the user can connect this IDF object with an ODF object. All connections specified

in the Graphical Layout Window are activated, and the data produced from the IDFs are

sent to the ODFs through these connections.

a

b c

d e f g h i j

k

l m

n

9

Section 2.1. Device Object Creation

When the mouse pointer moves over the “Model” pulled-down menu (Figure 2.2 (a)),

IoTtalk sends the retrieved model names back to the GR. The GUI uses these device model

names to render a pull-down list for device models to be shown in the window (Figure 2.2

(a) and (b)).

Figure 2.2. Device model selection

When the user clicks on an item in the “Model” pull-down menu (e.g., MorSensor in

Figure 2.2 (b)), the GUI shows them in the Management Window (Figure 2.2 (c)). In Figure

1.1, D1 (a MorSensor device) has two IDFs (i.e., Acceleration and Temperature). The GUI

renders the IDF/ODF Selection module to list all device features in the Management

Window (Figure 2.2 (d); note that in this example, MorSensor does not have any output

device features).

For the IoT devices involved in a project, not all device features of these IoT devices

are used. The user can select the needed device features from the device model for

connections. After the user has “checked” the desired device features (e.g., the graphical

check box for Acceleration in Figure 2.2 (d) is selected) and clicked the “Save” button

a

b

c

d

e

f
g h

i

j

10

(Figure 2.2 (e)), which results in creation of a device object drawn in the Graphical Layout

Window (Figure 2.2 (f)). As mentioned previously, the device object consists of a device

setting object (Figure 2.2 (g)), a device model name object “MorSensor” (Figure 2.2 (h))

and one or more device feature (DF) objects (Figure 2.2 (i)).

If the created device object has only one device feature (an IDF or an ODF), for

example, the Bulb only has the Luminance ODF, the GUI directly plots the device object

(Figure 2.2 (j)) in the Graphical Layout Window without asking the user to perform device

feature selection.

Section 2.2. GUI Operations on Device Objects

In this section, we describe how to download the DA code to a mobile phone, set up

the device objects and mount IoT devices on these device objects. Then we show how to

establish the connections among them and manage the corresponding DF functions.

When the user clicks a device setting object (Figure 2.3 (a)), the GUI shows the

corresponding DF Selection module in the Management Window. Specifically, the GUI

retrieves the device object information (e.g., the possible DFs of MorSensor are

“Acceleration” and “Temperature”, and the Acceleration DF is selected in Figure 2.3). Then

the GUI illustrates the Device module (Figure 2.3 (b)) in the Management Window.

11

Figure 2.3. Device object setting

2.2.1. Device Application Installation

The Device module provides two input boxes (Figure 2.3 (c) and (d)) to send the

download hyperlink of the device model’s device application (DA) program to a mobile

phone through email or short message, respectively.

In Figure 1.3, an IoT device connects to IoTtalk through a mobile phone. To correctly

connect the IoT device to EasyConnet, the mobile phone must be installed the DA for this

IoT device. If the user inputs the email address in the Email input box (Figure 2.3 (c)), the

IoTtalk will send a message to that email account. The message body includes a download

hyperlink for the DA. When the user reads the email and clicks the download hyperlink

through a mobile phone, the DA will be automatically installed in that mobile phone.

Similarly, the above DA installation procedure can be executed through Short Message

Service (SMS) by filling the phone number in the SMS input box (Figure 2.3 (d)). When the

user clicks the “Send” button (Figure 2.3 (e) or (f)), IoTtalk sends a hyperlink of the DA

code to the user by email or SMS. The DA is installed automatically in a mobile phone

when the user clicks this link on that mobile phone.

a
b

c

d

e

f

g h

i

j

12

2.2.2. Device Object Setting and Binding

Through the settings of the Device module, the user can manipulate a device with the

operations such as changing the selected device features or deleting the device object.

After the user has selected the device features and clicks the “Save” button (Figure 2.3

(g)), IoTtalk updates the device object information. Then the GUI illustrates the modified

device object in the Graphical Layout Window.

When the user clicks the “Delete” button (Figure 2.3 (h)), a dialog box pops up for the

user to reconfirm the deletion (Figure 2.3 (i)). After the user has clicked the “OK” button

(Figure 2.3 (j)), the IoTtalk deletes the information related to the device object from the DB

and the GUI removes the device object from the Graphical Layout Window.

When a device object is created, its name object shows the device model name (e.g.,

MorSensor in Figure 2.3 (a)). When the user clicks the name object, the GUI obtains all

registered devices of this device model from the DB. Suppose that several devices (e.g., My

MorSensor and My MorSensor2) of the same device model have registered to IoTtalk. For

each of the registered IoT devices, the GUI renders it as an item of the “Registered Device”

list in the Management Window (Figure 2.4 (a)).

Figure 2.4. Device to device object binding

After the user has selected the device in the “Registered Device” list (e.g., My

MorSensor in Figure 2.4 (b)), IoTtalk binds the real device to the device object. Then the

GUI replaces the device model name (e.g., MorSensor) of the name object with the device

b
ac

13

name (e.g., My MorSensor) highlighted with the blue color (Figure 2.4 (c)), which indicates

that this device object has been bound to a real device. If there is only one device in the

“Registered Device” list, the GUI replaces the device model name with the device name

without the need of the selection step (i.e., Figure 2.4 (a) is not shown).

To unbind a device, the user clicks the device name object (e.g. My MorSensor in

Figure 2.4 (c)). IoTtalk unbinds the device from the device object and the GUI replaces, for

example, “My MorSensor” by “MorSensor” in Figure 2.4.

2.2.3. Operations on Device Feature Connection

In IoTtalk, an IDF is connected to an ODF through a small circle called join object in

the Graphical Layout Window. In Figure 2.5, the Acceleration IDF object (Figure 2.5 (a)) is

connected to the join object (Figure 2.5 (b)) by a line segment, and the Luminance ODF

object (Figure 2.5 (c)) is also connected to the join object by another line segment. The two

links connecting an IDF and an ODF through the join circle (e.g., (a)-(b)-(c) in Figure 2.5)

define a data path. If a connection involves only one IDF, it is called a single join. If a

connection involves multiple IDFs, it is called a multiple join. For multiple IDFs connected

to a join point, IoTtalk provides the join functions for these IDFs to affect ODFs. For

multiple ODFs connected to a join point, the effects of the IDFs on all ODFs are the same.

Therefore, even if multiple ODFs are connected to a join point, it is still called a single join

if only one IDF is connected to this join point. This subsection elaborates on single join.

Details of multiple join will be discussed in the next subsection.

Figure 2.5. Connection creation

e

f

g

a

d

c
b

14

We describe connection creation by using the example in Figure 2.5. By clicking the

Acceleration IDF object (Figure 2.5 (a)) and then the Luminance ODF object (Figure 2.5

(c)), or in the reverse order, IoTtalk creates a connection. A connection includes several line

segments and a join object where the line segments meet. This connection is automatically

assigned a default name “Join 1” (Figure 2.5 (d)). Note that “Join K” represents the K-th

connection created in the project. This name can be modified by the user later. The

connection is implemented by a network application that is a Python program. After the

IoTtalk has stored the connection in the DB, the GUI draws the input box for the connection

name (Figure 2.5 (e)), the IDF module (Figure 2.5 (f)), and the ODF module (Figure 2.5 (g))

in the Management Window and highlights the connection object with the red color, which

means that the parameters of this connection object can be set up through the IDF and the

ODF modules in the Management Window.

The input and output device features are connected through the setups of the IDF

module (Figure 2.6 (a)) and the ODF module (Figure 2.6 (b)). The IDF module is a table

that lists the DF-parameters (x1, x2,…, xn) of an IDF. The (Sample) “Type” pull-down menu

(Figure 2.6 (c)) allows the user to specify the sample type of xi. Let xi(j) be the j-th xi datum

of the Acceleration IDF. When IoTtalk receives xi(j), the sample type of DF-parameter xi

can be sample (i.e., the value xi(j)) or variant (i.e., the difference xi(j)−xi(j-1)). IoTtalk

provides some DF functions (e.g., min, max, scalar and so on) that take the DF-parameters

as inputs. The user clicks to select a DF function in the “Function” pull-down menu (Figure

2.6 (d)). The user can also select “add new function” (Figure 2.6 (e)) to create a new DF

function or select “disabled” so that no function is applied. If the user disables the DF

function, the IDF-parameters (x1,…, xn) will be passed to the next stage (e.g., the ODF

module) directly. How to create a DF function will be described in Section 2.2.5. In Figure

2.6 (c), the variant type is selected for x1, x2 and x3 to compute the variation of acceleration.

15

Then the scalar function (Figure 2.6 (d)) is selected to transfer the IDF-parameter values (x1,

x2, x3) to their scalar value. This scalar value is automatically normalized in the range [0,1].

Figure 2.6. The IDF and the ODF modules in the Management Window

In the ODF module, the “Function” pull-down menu (Figure 2.6 (f)) allows the user to

select a DF function for each of the k ODF-parameters (y1,…, yi,…, yk). Since the ODF

function is disabled in Figure 2.6 (f), the input from the previous stage (e.g., the IDF

module) is assigned to yi directly. Before yi is received by the real output device, it may be

scaled within a range. By setting up the IDF and the ODF modules, the Acceleration IDF of

the MorSensor is mapped to the Luminance ODF of the Bulb.

To save a connection configuration in the DB, the user clicks the “Save” button

(Figure 2.6 (g)). In this operation, the IoTtalk collects the IDF module settings (e.g., sample

type and IDF function) and the ODF module settings (e.g., ODF function), and stores the

connection configuration in the DB. After saving, for example, the device “My MorSensor”

and the device “My Bulb” in Figure 2.3 can interact through the connection configuration.

A connection can be “completely” deleted or “partially” deleted. If all line segments

of the connection are removed, it is a complete deletion. If one or more (but not all) line

segments are removed, it is a partial deletion. Therefore, there are two kinds of “Delete”

buttons. For the “Delete” button placed outside the IDF/ODF modules (Figure 2.7 (a)), it is

used for complete deletion. If a “Delete” button is placed inside the IDF/ODF module, it is

b

c
d

e
f

a

g

16

used to remove the line segment corresponding to the specific IDF/ODF module (Figure 2.7

(b) and (d)). When the user clicks the complete “Delete” button, IoTtalk completely deletes

the connection information from the DB, and the network application is removed. Finally,

the GUI removes the connection object from the Graphical Layout Window. To delete a

specific line segment of a connection, the user clicks the “Delete” button of the DF module

corresponding to that line segment. For example, when the user clicks the “Delete” button

in the IDF module (Figure 2.7 (b)), IoTtalk only deletes this specific line segment. Then the

GUI removes the line segment (Figure 2.7 (c)) between the IDF object (e.g., Acceleration)

and the join object (e.g., Join 1) from the Graphical Layout Window.

Figure 2.7. Connection deletion

2.2.4. Multi Join Connection

As we previously mentioned, IDFs of multiple IoT devices can be connected to an

ODF in IoTtalk. We provide the join functions that accommodate multiple IDFs to affect

ODFs. These join functions are basically the same as the DF functions except that the

DF-parameter inputs are replaced by the IDF inputs from one or more IoT devices.

Figure 2.8 extends the single join connection in Figure 2.5 to a multiple join

connection. Consider a game called “Vibration or Voice” where player 1 makes big

vibration with MorSensor, and player 2 makes loud voice to the Microphone IDF of a smart

phone. If the vibration dominates, then a bulb becomes brighter. Otherwise (the voice

c

a

b

d

17

dominates), the bulb becomes darker. To implement this game in IoTtalk, vibration

measured by the Acceleration IDF of the MorSensor device is used as player 1’s input, and

voice received by the Microphone of the smart phone is used as player 2’s input. Luminance

of the bulb is the output of this game. “Does vibration dominate voice” is a join function

“larger than” (z1>z2?) that compares the normalized Acceleration value (z1) with the

normalized Microphone value (z2). If z1>z2, then the result zF=1. Otherwise (z1<z2), the

result zF=0. In the Luminance ODF module, the function Increment(zF) is selected, which

increments the luminance of the bulb if zF=1, and decrements the luminance if zF=0. To

implement this game, we extend “Join 1” in Figure 2.5 by adding a new device object

(Figure 2.8 (a)) and a line segment (Figure 2.8 (b)) as follows: the user clicks the DF object

“Microphone” (Figure 2.8 (c)) and the join object “Join 1” (Figure 2.8 (d)) to create a new

line segment.

Figure 2.8. Adding a new device object and a new line segment

The outputs of M IDFs linked to the join object are (xN,1, …, xN,m, …, xN,M), where xN,m

is the IDF output for the m-th line segment. (The subscript notation N in xN,m means that this

value has been normalized between 0 and 1) These outputs become the inputs z1, z2, …, zM

of a join function. For the example in Figure 2.8, the first line segment (xN,1) links the

Acceleration IDF of “My MorSensor” to the join object and the second line segment (xN,2)

links the join object to the Microphone IDF of “My Phone”. When the user connects

multiple IDF objects to the join object, the corresponding Multiple Join module is shown in

the Management Window (Figure 2.9 (a)). Note that for multiple ODF objects linked to the

a b

c

d

18

join object, if there is only one IDF, then there is no need to involve any Multiple Join

module. In the Multiple Join module, the “IDF (Line)” field (Figure 2.9 (b)) allows the user

to rearrange the order of the parameters; i.e., it allows switching of the IDF output xN,m. In

our example, z1=xN,1 is set to Line 1 (Acceleration; Figure 2.9 (c)) and z2=xN,2 is set to Line 2

(Microphone; Figure 2.9 (d)) without changing the order.

The user clicks the “Join Function” menu to select “larger than (z1>z2?)” (Figure 2.9

(e)). The function returns 1 if z1>z2 is true and returns 0 if z1>z2 is false. The result of the

join function zF is the input of a function in the ODF module (Figure 2.9 (f)). The

Increment(zF) function (Figure 2.9 (g)) is selected, which increases the luminance of the

bulb if zF=1 or decreases if zF=0. Finally, the user clicks the “Save” button (Figure 2.9 (h))

to store the configuration. Then the devices “My MorSensor”, “My Phone” and “My Bulb”

can interact through this connection configuration, and the “Vibration or Voice” game is

successfully created.

Figure 2.9. Multiple Join module

a

f

b

c
d

e

g

h

i

19

2.2.5. Function Management Module

IoTtalk utilizes DF functions to manipulate the data transmitted between device

features. A DF function transforms the parameter inputs of an IDF to a value. For example,

the scalar function transfers the x-axis, the y-axis and the z-axis values (x1, x2, x3) of

Acceleration into a scalar value

Scalar(𝑥1, 𝑥2, 𝑥3) = √𝑥12 + 𝑥22 + 𝑥32

 These DF functions are collected in the Global Function List stored in the DB. Same

functions can be reused for different IDFs. For example, the Gyroscope IDF can use the

same scalar function to transfer its x-axis, y-axis, and z-axis values into the scalar value.

When the user selects the “add new function” in the “Function” pull-down menu of

the IDF/ODF module (e.g., Figure 2.9 (i)), IoTtalk obtains the DF function list from the DB.

The GUI hides the IDF/ODF modules and shows the Function Management module (Figure

2.10) in the Management Window. To exit function management, the user clicks the “Close”

button (Figure 2.10 (c)), and the GUI redraws the IDF/ODF modules in the Management

Window.

In the Function Management module, all DF functions are listed in the Global

Function List (Figure 2.10 (a)) and are stored in the Function Table of the DB. The DF

functions for a specific device feature (e.g., Acceleration) are listed in the Specific DF

Function List (e.g., the Acceleration Function List in Figure 2.10 (b)). This Specific DF

Function List is stored in the FunctionSDF table of the DB.

20

Figure 2.10. Function Management module

When the user selects a DF function (e.g., scalar), IoTtalk obtains the selected

function information. Based on this information, the GUI shows the “Function Name” input

box (Figure 2.10 (d)), the “Version” pull-down menu (Figure 2.10 (e)) and the Python code

for the function body (Figure 2.10 (f)). When function editing is finished, the user clicks the

“Save” button (Figure 2.10 (g)), IoTtalk stores the function information and create a new

version of this DF function in the DB. Then the GUI redraws the “Version” pull-down

menu with the new version item. If the user selects the “add new function” (Figure 2.10 (h))

in the Acceleration Function List, the “Function Name” input box, the “Version” pull-down

menu and the function body will be erased from Figure 2.10 (d), (e) and (f), and the GUI

renders blank space for the user to edit the new function. When the user saves the new

function, the GUI not only redraws the “Version” pull-down menu but also redraws the

Acceleration Function List with the new function item.

When the user selects a DF function and clicks the “Delete” button (Figure 2.10 (i)),

IoTtalk removes the DF function information from the database. Then the GUI erases the

function name and redraws the Specific DF Function List without the deleted function.

a b

d

e

f

gi

h
j

k

c

21

The functions for a DF can be organized as follows. The user clicks the “>>>” button

(Figure 2.10 (j)) to move a selected DF function from the Global Function List to the

Specific DF Function List (e.g., Acceleration Function List in Figure 2.10 (b)). To do so,

IoTtalk updates the function information in the DB, and the GUI redraws the Specific DF

Function List to include the selected function as an item in this list. Similar to the operation

“>>>”, if the user clicks the “<<<” button (Figure 2.10 (k)), IoTtalk moves the function

from the Specific DF Function List to the Global Function List.

Section 2.3. Device Feature and Model Management

IoTtalk provides the Device Feature and Model Management Window (Figure 2.11) to

create and manage the device features and the device models. This window includes a

“Device Feature/Device Model” (DF/DM) toggle button (Figure 2.11 (a)), a DF category

bar (Figure 2.11 (b)), the Device Feature Window (Figure 2.11 (c)) and Device Model

Window (Figure 2.11 (d)). When the “Device Feature” mode is selected in the toggle button

(Figure 2.11 (a)), the Device Feature Window is activated, and the user can edit a new or an

existing device feature. On the other hand, when the “Device Model” mode is selected

through the toggle button, the Device Model Window pops up to allow the user to create

and edit the device models. The DF category bar lists all DF categories which can be Sight,

Touch, Echolocation, Hearing, Temperature, Motion, Chemoreceptor, Kinesthetic and

Magnetoception. The new IoTtalk version will reduce the DF categories to Sight, Hearing,

Feeling, Motion and Other.

22

Figure 2.11. Device Feature and Model Management Window

2.3.1. Device Feature Management

To access the Device Feature Window, the user toggles the “DF/DM” button to the

“Device Feature” mode.

After the “Device Feature” mode is selected, the user clicks a DF category (e.g., Sight;

Figure 2.12 (a)) in the DF category bar. The GUI displays two radio buttons for IDF/ODF

type selection (Figure 2.12 (b)), and shows the selected DF category (Figure 2.12 (c)). The

IDF type is automatically selected as the default type, and IoTtalk obtains all DFs for the

selected DF category and DF type (Figure 2.12 (d)). The first item of the list is “add new

DF”, which can be clicked to create a new DF. The details are given in the next subsection.

If the user presses the ODF radio button (Figure 2.12 (b)), all IDFs in the “DF Name” list

(Figure 2.12 (d)) are replaced by all ODFs of the selected category.

d

a b

c

Motion

Motion

23

Figure 2.12. Device Feature Window

To create a new device feature, the user selects the “add new DF” in the “DF Name”

list (Figure 2.12 (d)), and the GUI pops up the DF Parameter module (Figure 2.13 (a)) in the

Device Feature Window. The rows of the DF Parameter module are created based on the

number of the DF-parameters (Figure 2.13 (b)). The default DF-parameter number is one.

For each of the DF-parameters, the DF Parameter module includes the Type (i.e., the data

types such as float, string and so on; see Figure 2.13 (c)), the Min (minimal) and Max

(maximal) values (Figure 2.13 (d)) and the Unit (e.g., cm, m/s2 and so on; Figure 2.13 (e)).

For an IDF, the Min/Max values are automatically assigned and the user does not need to

fill these fields. For an ODF, if the Min/Max fields are not filled, the ODF-parameters take

arbitrary values without range limits. The user edits them according to the characteristics of

the ODF provided in the manufacture’s data sheet. For example, the luminance value of the

Bulb (D3 in Figure 1.1) has the range [0, 500]. When the user clicks the “Save” button

(Figure 2.13 (f)), the GUI pops a dialog box for the user to input the name of the new device

feature (Figure 2.13 (g)). Then IoTtalk stores device feature information into the DB. We

note that the “Type” field (Figure 2.13 (c)) refers to data type, which is different from the

“Type” field for the sample type in the IDF module in the Management Window (Figure 2.6

(c)).

a

bc

d
Sight

DF

Camera

Camera

Color sensor

24

Figure 2.13. Device feature creation

From the “DF Name” list, the user selects and edits an existing DF (e.g., Acceleration;

see Figure 2.14 (a)). If the user modifies the DF-parameter number (Figure 2.14 (b)), the DF

Parameter module will be redrawn based on the new number. Then the user can edit the data

type, the Min/Max values and the unit of each DF-parameter. After the user has completed

editing the device feature and clicks the “Save” button (Figure 2.14 (c)), a dialog box pops

up for the user to reconfirm the modifications (Figure 2.14 (d)). The device feature name is

shown in this dialog box, which allows the user to rename the modified device feature by a

new one. When the user clicks the “OK” button (Figure 2.14 (e)) of the dialog, IoTtalk

stores the information in the DB. When the user clicks the “Delete” button (Figure 2.14 (f)),

IoTtalk removes the device feature from the DB.

b
c d e

f
g

a

Motion

25

Figure 2.14. Device feature modification (*figure is replaced by figure 6.4 easyplug-In

paper)

2.3.2. Device Model Management

To manage the device model, the user toggles the “DF/DM” mode to “Device Model”

(Figure 2.15 (a)). Then the Device Model Window is popped up (Figure 2.15 (b)) together

with the Device Feature Window (Figure 2.15 (c)). The Device Model Window shows the

“DM Name” pull-down menu (Figure 2.15 (d)) which allows the user to select a device

model. The first item in the list is “add new DM”. This item can be clicked to create a new

model. The Device Feature Window is also shown in the “Device Model” mode for the

user’s benefit: the user may need to know the details of a specific device feature when

he/she is configuring a device model.

Figure 2.15. Device Model Window (*Motion!)

b
c d e

f
g

a

Motion

a

c
b

d

26

To create a new device model, the user selects the “add new DM” in the “DM Name”

pull-down menu (Figure 2.15 (d)), and the GUI pops up the DF module (Figure 2.16 (a))

and the “Add/Delete DF” module (Figure 2.16 (b)) in the Device Model Window. The DF

module lists the DFs of the device model. For a new model, the DF module is empty

initially. The user can add a DF to this device model through the “Add/Delete DF” module.

The operation for adding a DF is described as follow. The user first selects a category for

device features in the DF category bar and selects the DF type from one of the two radio

buttons in the “Add/Delete DF” module (e.g., IDF is selected in Figure 2.16 (c)). Then the

“Add/Delete DF” module shows all DFs (Figure 2.16 (d)) of the selected DF type for the

DF category (Figure 2.16 (e)). When the user selects a DF in the “Add/Delete DF” module,

the DF is automatically displayed in the DF module (Figure 2.16 (a)). After the user has

selected all desired DFs for the device model and clicks the “Save” button (Figure 2.16 (f)),

the GUI pops a dialog box for the user to input the name of the new device model (Figure

2.16 (g)) and IoTtalk creates the new device model in the DB.

Figure 2.16. Device model creation

To configure an existing device model, the user selects that device model (e.g.,

Smartphone; Figure 2.17 (a)) in the “DM Name” pull-down menu. IoTtalk retrieves the DFs

of the device model from the DB and the GUI pops up the DF module (Figure 2.17 (b)) and

f

g

b c e

a

d

27

the “Add/Delete DF” module (Figure 2.17 (c)).

To obtain more details of a specific DF, the user moves the mouse pointer over the DF

name in either the DF module or the “Add/Delete DF” module (e.g., Acceleration; see

Figure 2.17 (d)). IoTtalk obtains the details of the selected device feature and the GUI

shows them in the Device Feature Window (Figure 2.17 (e)). In this way, the user can

conveniently investigate the details of a DF selected in the Device Model Window.

If the user wants to delete a device feature (e.g., Microphone) from the device model,

he/she clicks the DF item in the DF module (Figure 2.17 (f)), and this device feature is

shown in the “Add/Delete DF” module automatically. Then the user can unselect the device

feature in the “Add/Delete DF” module (Figure 2.17 (g)) to remove it from the device

model.

Figure 2.17. Device model modification (*Motion!)

After the user has completed configuring the device model and clicks the “Save”

button (Figure 2.17 (h)), a dialog pops up for the user to reconfirm the modifications

(Figure 2.17 (i)). The device model name is shown in this dialog, which allows the user to

rename the modified device model by a new one. When the user clicks the “OK” button

(Figure 2.17 (j)) of the dialog, IoTtalk stores the information of the specific device model in

the DB. On the other hand, when the user clicks the “Delete” button (Figure 2.17 (k)),

IoTtalk removes the device model from the DB.

e

f

h k

d

g

i

j

c

a

b

28

